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Semiclassical features in the quantum description of a Dirac particle in a cavity

S. C. Phatak* ]
Physics Department, Oregon State University, Corvallis, Oregon 97331

Santanu Pal
Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Calcutta 700 064, India

Debabrata Biswas
Theoretical Physics Division, Bhabha Atomic Research Centre, Bombay 400 085, India
(Received 9 May 1994; revised manuscript received 26 September 1994)

The question of classical correspondence in the case of the Dirac equation has not been fully resolved
as yet. In this paper, we consider Dirac particles in cavities of various shapes and provide numerical evi-
dence of the influence of periodic orbits in the quantal density of states, d (E). Interestingly, the orbit
lengths seem to be the same as in the (scalar) spinless case, though the associated phases in the periodic
orbit sum for d (E) are in general different. We also study the spectral fluctuations and find that statisti-
cal measures reflect an order-to-chaos transition in the underlying classical dynamics, similar to that
seen in the scalar case. We provide a detailed study of the wave functions as well and find, apart from
other characteristic features, the existence of scarred states. Typical irregular eigenfunction com-
ponents, however, exhibit contour splitting and have a Gaussian amplitude distribution.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

The last couple of decades have witnessed a revival of
interest in semiclassical methods applied to quantum sys-
tems. The importance of such studies stems from the fact
that generic classical systems are indeed nonintegrable or
irregular, and in such cases direct semiclassical tech-
niques such as the Bohr-Sommerfeld theory or the
Einstein-Brillouin-Keller (EBK) quantization schemes [1]
do not work. This gap has, however, been bridged to a
large extent for spinless particles with the formulation of
the periodic orbit theory by Gutzwiller [2] and Balian
and Bloch [3]. Thus the density of states can be ex-
pressed as a smooth average part superposed with fluc-
tuations that arise as a sum over contributions from all
periodic orbits of the underlying classical system. This is
true for integrable systems as well [4] though the
influence of periodic orbit families differs from that of
isolated trajectories. A difficulty in this global scheme,
however, lies in its practical implementation since it re-
quires the enumeration of the lengths and stability indices
of periodic orbits. Recent studies thus focus on viable
quantization methods [5] though the duality in the classi-
cal length and quantal energy spectrum is now well estab-
lished for the spinless case.

Our interest here lies in relativistic quantum systems
having spin. In contrast to the nonrelativistic case for
scalar particles, where the semiclassical mechanics is now
well known, the Dirac Hamiltonian for a relativistic par-
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ticle does not lend itself directly to a classical description
in the correspondence limit, essentially because spin is a
quantum variable without a classical analogue. A classi-
cal model for electron was first obtained by Barut and
Zanghi [6] who accommodated spin by introducing con-
jugate classical spinor variables in addition to the conju-
gate variables (x,p) in 3+1 dimensions. The resulting
classical dynamical equations described the motion of an
electron in 4+ 1 dimensions. The propagator of a Dirac
particle was subsequently obtained [7] as a path integral
over classical action S in the form [e®, which is a ma-
trix since it is necessary to specify not only the end points
of the path in spatial coordinates, but also the internal
spin degrees of freedom. It should then be possible to ob-
tain the density of quantum states in terms of classical ac-
tions from the trace of the Fourier transform of the prop-
agator. Alternatively, starting with the full quantum
mechanical Dirac propagator for a particle in a two-
dimensional billiard, the average part of the spectral den-
sity was obtained [8] by evaluating the trace of the
infinite-space Green’s function in the lowest order. How-
ever, it still remains to extend the semiclassical methods
to such matrix propagators to obtain the fluctuating part
of the spectral density. Do periodic orbits influence the
Dirac eigenspectrum and if so how does it differ from the
Schrodinger case? Are statistical measures indicative of
the underlying classical dynamics? Similar questions can
be posed for the wave functions as well. Do generic no-
dal patterns, contour plots, and amplitude distributions
reflect the nature of the classical system and do short
periodic orbits leave their imprint or scars in a fashion
similar to the spinless nonrelativistic case? Further, the
Dirac wave function is a four-component object and its
interpretation in terms of classical orbits in the
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correspondence limit is not obvious. A procedure to
decouple the Hamiltonian matrix for multicomponent
wave functions was formulated by Littlejohn and Flynn
[9-11] using Weyl symbol calculus which was recently
[12] used to obtain classical equations of motion for
Hamiltonians with a spin-orbit interaction. Earlier, vec-
tor wave functions were also considered semiclassically
by Balian and Bloch [3]. However, the above procedure
has not been applied to the Dirac Hamiltonian so far.
We would also like to point out that this procedure re-
quiring diagonalization of the Hamiltonian matrix is
highly nontrivial. Neither it is possible to ascertain a
priori whether the diagonalization scheme would apply to
the Dirac Hamiltonian at all. On the other hand,
analysis of energy level statistics and wave functions is a
simpler task enabling us at the same time to explore the
classical features of the Dirac Hamiltonian.

In the present paper, we shall concentrate on the appli-
cability of semiclassical methods to the energy spectra of
both integrable and nonintegrable Dirac Hamiltonians.
Specifically, we shall study the fluctuation measures of
the Dirac spectrum, namely, the nearest neighbor spacing
distribution and the spectral rigidity, for a relativistic
particle in a cavity. We shall also present a detailed
study of the wave functions. We shall find that the
characteristic features of the fluctuation measures and
the wave functions are similar to those obtained earlier
for nonrelativistic spinless systems. Since the nature of
the fluctuation measures for nonrelativistic systems can
be explained [14-17] semiclassically in terms of the dy-
namics of the analogue classical systems, the above simi-
larity with the relativistic cases would indicate that semi-
classical methods can as well be applied to the Dirac
Hamiltonian. Though we would not arrive at the explicit
form of the classical analogue of the Dirac Hamiltonian
for a particle in a cavity from the present studies, the
semiclassical features of the Dirac Hamiltonian would
confirm the presence of an underlying classical motion.
Further, as the fluctuation measures in nonintegrable sys-
tems are quite different from those of the integrable ones,
it is essential that we study both before we draw any con-
clusions regarding classical correspondence of the Dirac
equation. This is the chief motivation of this work. The
issue is important as subatomic physics involves nonclas-
sical degrees of freedom, spin being the most familiar of
these. Semiclassical descriptions, which are intuitively
appealing, might therefore lead to a better understanding
of such systems.

In the following section, we shall briefly sketch the
essential steps to calculate the eigenenergies and eigen-
functions of a Dirac particle in a nonspherical cavity.
The fluctuation properties of the eigenenergies will be an-
alyzed in Sec. III. In Sec. IV, the characteristic features
of the wave functions will be presented. Section V is the
concluding one. In what follows, we set #i=c =1 and en-
ergy is expressed in units of fm !,

II. DIRAC PARTICLE IN A DEFORMED CAVITY

The system we consider here is a relativistic spin-1 par-
ticle constrained to move in a cavity having quadrupole
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deformation. Thus it is a three-dimensional billiard hav-
ing spin. In principle, the calculation can be done for a
cavity having arbitrary shape. But the calculations for a
quadrupole deformation are somewhat simpler and the
essential features of the order-to-chaos transition can be
demonstrated by varying the deformation parameter.

A Dirac Hamiltonian in two dimensions (“neutrino bil-
liards”) was considered earlier [8] as an example of a
time-reversal symmetry breaking system and the energy
spectrum was found to be consistent with the statistics of
a Gaussian unitary ensemble (GUE). It should be point-
ed out, however, that the present Hamiltonian in three
dimensions is time-reversal symmetric. Moreover, we
shall pay particular attention to the role of the periodic
orbits to emphasize the semiclassical nature of the spec-
trum. It may further be clarified at this point that in
what follows we shall refer to the classical periodic orbits
of the Dirac Hamiltonian in the context of their effect as
revealed from the quantum spectrum, and they are not
obtained explicitly here from any classical dynamical cal-
culation.

Consider a relativistic spin-1 particle constrained to
move in a cavity represented by a scalar four-potential
V(7). To obtain the eigenenergies and the eigenfunctions
we have to solve the Dirac equation:

[@-P+B{m+V(F)} ¢ (F) =€ (F) (1)
with

0 for r <R(6,¢)

VA= 1% for r>R(6,4),

where R (0,¢) defines the cavity surface in spherical po-
lar coordinates. The energy eigenvalues will be deter-
mined from the linear boundary condition

— iR (F) =y, (F) @)

at the boundary of the cavity. Here # is the outward unit
normal to the boundary, @ and 3 are the Dirac matrices

0 ¢

g 0

1 0
0 —1

Rl

) (3)

b

Yo=08, and ¥=pa. This boundary condition corresponds
to a normal flow of zero current through the cavity sur-
face [13]. It also satisfies the Hermiticity requirement of
the Dirac Hamiltonian within the cavity and does not
give rise to antiparticles in the classically forbidden re-
gion [8]. Further, Eq. (2) corresponds to a specular
reflection of the spatial part of an incident Dirac spinor
on a flat boundary without flipping the spin [8]. The
above boundary condition gives a transcendental equa-
tion for the eigenenergy €. For a spherical cavity of ra-
dius R, the conserved quantities are the energy ¢, the to-
tal spin j, the projection of the spin along the z axis, m s
and k&, which is the eigenvalue of the operator
K=pB(o-L+1). One can show that k=%(j+1). Thus
the eigenstates can be labelled by &, k, and m e The solu-
tions are
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where N is the normalization constant, p =(g? functions can be written as
2172 Jr— ; . . :
—m?*)'/% k'=—k,j,(pr) is the spherical Bessel function, . kg
[] is the Clebsch-Gordan coefficient for coupling of two 1/’57"',-(")_% Ak‘/’s,mj(r) : )

angular momenta, Y,,ml are the spherical harmonics, and
X1/2,m_ is the two-component Pauli spinor. The constant

C in the lower component is +p/(p +m) with + (—)
sign for k positive (negative). In terms of k, j, /, and I’
are given by j=k—1 (—k—1), I=k (—k—1), and
I'=k—1 (—k) for k positive (negative). The energy ei-
genvalues € are obtained by solving Eq. (2) above. For a
spherical cavity, this implies j,(pr)= — Cj;(pr) and eigen-
values of p are obtained by numerically solving this equa-
tion. For an arbitrarily shaped cavity, we do not have
analytic solutions. We can, however, expand the eigen-
functions in a spherical basis and impose the boundary
condition [Eq. (2)] numerically. For an axially symmetric
cavity, m; is still a good quantum number and the eigen-

|

[ [1 + > a;P;(cosb)
1

7+ S a, P/(cos)sing §
]

Choosing the z axis along the axis of symmetry, the
boundary condition [Eq. (2)] becomes

—i[7 RO m ()] =ri0r= [V, m ()] = o) - (6)

Here, 6 is the angle from the symmetry axis. For an arbi-
trary axially symmetric deformation, the boundary R (8)
can be expressed in the form

R(0)=R, (7)

1+ a,P;(cosf)
1

with P; being the Legendre polynomial. In terms of R (6)
defined above, 7 is

%(6)= 3

[ [1 + > a;P/(cosf) | +
1

Using Eqgs. (4)—(6), the upper component gives

S[F-7(0)5FCyjpprixy’ (7)
k

+3 i ()] —re) 4 =0 . )
k

The equation for the lower component is identical. This
equation can be converted into a matrix equation by mul-
tiplying by (x;:/ ) and integrating over angles. Notice
that » in the Bessel functions depend on 6 and therefore
the integration has to be done numerically. With this,
the boundary condition reduces to

> M, .(e)A4,=0. (10)
k

The energy eigenvalue are determined by demanding that
the determinant of M k,,’c,(s) vanish and the coefficients
A, are determined by solving Eq. (10) above. The matrix
M above is infinite dimensional. In a numerical calcula-
tion, M is truncated while ensuring that the energy eigen-
values are stable. For a given range of ¢, the eigenvalues
(zeros of the determinant) are first located with an abso-
lute accuracy of 10”7 using a trial size of M. Subsequent-
ly, the dimension of M is increased (typically by adding

77172
Za,P,’(cose)sinB] ]
1

(8)

[
two more rows and columns) and the eigenvalues are
again obtained. If each of the eigenvalues of the new set
differs by more than 10~ from the corresponding ones of
the earlier set, the dimension of the matrix is increased
further till the above criterion is met. Further, we set the
mass m =0, in order to make the calculation fully relativ-
istic. This is evidently an idealization which is reached in
an energy domain where the rest mass of a particle is ex-
tremely small compared to the energy values. We also
choose the value of R, in Eq. (7) to be 1 fm:

III. SPECTRAL FLUCTUATIONS
OF THE DIRAC HAMILTONIAN

We shall focus on two aspects of the Dirac eigenspec-
trum in this section. As for the Schrodinger spectrum,
the density of eigenenergies, d (E), for the Dirac spec-
trum can be expressed as a sum of a smooth average part,
d,,(E), superposed with fluctuations, dy(E). Our interest
here lies in the nature of the fluctuations. To this end, we
shall first carry out a detailed analysis of their statistical
properties using commonly used measures such as the
nearest neighbor spacing distributions P (s) and the spec-
tral rigidity A;(L). The motivation here is directly relat-
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ed to the known results for the Schrodinger spectrum,
where P(s) and A;(L) belong to universality classes
which depend on the nature of the underlying classical
dynamics. An obvious question therefore concerns the
behavior of fluctuation measures with variation of a pa-
rameter which takes the classical dynamics away from in-
tegrability.

At a deeper level, the universalities in the Schrodinger
spectrum are due to the collective properties of periodic
orbits which constitute dq(E). An unmistakable signa-
ture of the semiclassical nature of the spectrum is also the
saturation of the spectral rigidity, a phenomenon that
does not emerge from random matrix models [14]. We
shall therefore look at this aspect as well while studying
the statistical properties. Finally, we shall analyze the
Fourier transform of the Dirac spectrum in order to ob-
tain a direct proof of the validity of periodic orbit theory
for relativistic systems with spin.

The energy spectra E; for quadrupole deformations
[a;=0 for all / except I =2; see Eq. (7)] of the cavity were
calculated using the method described in the section
above. These were subsequently “unfolded” to obtain the
sequence €, for further analyses. Apart from the spheri-
cal cavity, other shapes considered correspond to cavities
with a,=0.1 and 0.4.

Using the unfolded spectra, we first present the nearest
neighbor level spacing distribution P(s), defined such
that P(s)ds is the probability of finding successive levels
with spacing between s and s-+ds. The distribution is
shown in Fig. 1 for sequences of given parities and z com-
ponent of total angular momentum. Now it is already
known [15] that for systems with classical integrable
motion the levels tend to cluster in the quantum energy
spectrum and for generic regular systems the spacing dis-
tribution is given as P(s)=exp(—s), a Poisson distribu-
tion. On the other hand, levels tend to repel each other
for systems whose classical dynamics is chaotic and it
was shown [16] heuristically that the spacing distribution
follows the Wigner surmise, P (s)=(ms /2)exp(—s?/4).
Both of these ideal extremes are also shown in this figure.
The calculated distributions change from Poisson to
Wigner as the deformation increases from a,=0.0 to 0.4
through 0.1, typical of an order-to-chaos transition. The
spacing distribution therefore reflects the transition in the
classical dynamics and the two extremes (a@,=0 and 0.4)
belong to the respective universality classes (Poisson and
Wigner distributions, respectively) corresponding to reg-
ular and chaotic motion.

We next consider the spectral rigidity A;(L), defined as
the average mean square deviation of the spectral stair-
case N (E) from the best fitting straight line in an interval
of L mean level spacings:

1 egt+L/2
aD=(zp 1 .7, delN(e)—a—bel?) . (1

In the above equation, N(e) is the spectral staircase of
the unfolded spectrum (mean spacing unity) and { )
denotes local averaging around g, In the Schrodinger
case, the expression for the semiclassical density of states
in terms of periodic orbits,
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FIG. 1. The nearest neighbor spacing distribution for a,=0,
0.1, and 0.4. The solid lines correspond to the Poisson and
Wigner distributions. The upper one is for even parity states
while the lower one is for odd parity states.

d(E)=d,(E)+3 3 D, cos{r(S,—p,)} , 12)
P r

can be used to express the spectral rigidity as [17]

AyL)=

ﬁi N iqus( T)G(LT/2#) (13)

where G(y)=1—F2(y)—3[F'(y)]?, F(y)=(siny)/y, and
v takes values O or (N —1)/2 depending on whether the
periodic orbits are isolated or occur in (N — 1) parameter
families, N being the degrees of freedom. In Eq. (12)
above, r is the repetition number of a primitive orbit p
whose action and Maslov index are denoted by S, and u,,
respectively, while D,, is the corresponding amplitude.
The form factor

is crucial in the analysis and embodies the collective
properties of periodic orbits. Here S; and T; refer to the
reduced action and time period of the orbit, 4; is half the
amplitude that occurs in Eq. (12), and the subscripts i and
Jj refer to any periodic orbit, primitive or otherwise. For
the integrable and chaotic cases, ¢(T') has distinct univer-
sality classes [17,18] which manifest directly in A;(L) for
values of L <<L ., =hd,,(E)/Tp,. Thus

T,+T;
T_.._____L
2

& T)=<2 3 A4, 4,c08[(S, — ;) /#]
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L /15, integrable motion
A(L)=

For large L, the behavior of A;(L) depends crucially on
the orbit selection function G (y) (for a plot, see [17])
which saturates for y > . Thus for L >>L_,, the contri-
bution of even the shortest orbit ceases to vary as a func-
tion of L and this leads to a saturation in the spectral ri-
gidity. Clearly, this is a direct consequence of the ex-
istence of periodic orbits and hence an underlying classi-
cal dynamics in the system.

The rigidity obtained from the spectrum of a Dirac
particle for all three cases of «, is shown in Fig. 2. The
regular and fully chaotic limits are also shown. For a
spherical cavity, the curve closely follows the L /15 line
for small L. This is true for a small deformation
(a,=0.1) as well for both the even and odd parities, while
for a,=0.4 the curve for small L is close to the chaotic
limit. These observations are consistent with the results
for the nearest neighbor spacing distribution. For larger
values of L, the rigidity tends to saturate in all cases. It
therefore seems quite likely that the density of states for
the Dirac spectrum has fluctuations similar to those in
Eq. (12) for the Schrodinger spectrum.

This point can indeed be strengthened by evaluating
L ... The frequency of the slowest oscillation in dg(E),
which corresponds to T,;,, can be determined from a

Even Parity

FIG. 2. The spectral rigidity A;(L) for the three shapes as in
Fig. 1. The solid lines correspond to the integrable (straight
line) and chaotic limits. The arrows indicate the values of L,,,.
The upper one is for even parity states while the lower one is for
odd parity states.

In(L)/w*—0.007 , chaotic motion with time-reversal symmetry .

(14)

I

Fourier transform of the spectrum for m;=1 and posi-
tive and negative parity states considered separately. In
Fig. 3, we show plots of the function

g(x)=T3 cos(E,x )exp(—nE?) (15)

for a,=0, 0.1, and 0.4. In writing the above form, we
have used the fact that S,= f p dg=¢€X for a mass zero
particle of energy € and an orbit of length X. The damp-
ing factor 7 is introduced keeping in mind the finite
stretch of the spectrum available in practice and this
leads to a broadening of the peaks. Clearly, there are
several peaks indicating the validity of Eq. (12) in the
Dirac case. The position of the first peak can thus be
used to calculate the value of L ,,. These are marked in
Fig. 2. The values are seen to be consistent with the
theoretical predictions for A; using Eq. (12).

The physical interpretation of the lengths at which
peaks occur is thus a question that follows naturally . We
thus evaluate g(x) in Eq. (15) using both parities (the
effect of parity selection [19] is obvious in Fig. 3) and all
allowed projections of the total angular momentum. Our
results are displayed in Figs. 4 and 5 for a,=0 and 0.4,
respectively. The lengths of periodic orbits for a spinless
nonrelativistic particle are also marked for values of

2(X)

=

0.0 5.0 10.0

X(fm)

FIG. 3. The Fourier transform of the m;=1 even (dashed)

and odd (solid line) states for a,=0 (bottom), 0.1 (middle), and
0.4 (top). The position of the first peak is marked.
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FIG. 4. The Fourier transform of the combined spectra for
the spherical cavity. Both the Dirac and Klein-Gordon (KG)
cases are shown.

T T

a =04 Klein-Gordon

2(X)

X(fm)

FIG. 5. Asin Fig. 4, for a,=0.4.

x <10. For a,=0, the periodic orbits in the equatorial
plane are of shapes such as equilateral triangle, square,
pentagon, hexagon, and so on, corresponding to respec-
tive path lengths such as 5.196, 5.657, 5.878, and 6, and
so on, in addition to the shortest path of length 4 along
the diameters. The function g (x) has a distinct behavior
at these positions (for a discussion of shapes, see Ref.
[20]) though the width associated with 1 makes it difficult
to separate the last two. Distinct peaks can also be seen
at x =8 and around 9.5, corresponding to a repetition of
the orbit of length 4 and a pentagram orbit of length 9.51.

Thus the peak positions physically correspond to the
length of classical periodic orbits in the cavity. Notice
also the distinct shapes for the shortest orbit (x =4) and
its repetition at x =8. In the first case, there is an initial
positive peak and then a sharp drop resulting in a nega-
tive peak which decays to zero. The behavior is reversed
at x =8 indicating that phases in d4(E) occur as in Eq.
(12) (i.e., in multiples of the repetition number) and are
not equal to 27. This is in contrast to the expression for
the semiclassical density of states for the Schrodinger
equation of a two-dimensional billiard, where all phases
are equal to 7/4 [2]. In the present case (massless parti-
cle), however, we compare the behavior with the Klein-
Gordon (KG) spectrum whose Fourier transform is also
shown in Fig. 4. Clearly, at the periodic orbit lengths,
the curve for g (x) has a distinct behavior. Moreover, the
shapes at all lengths appear to be the same, indicating
that the phases are homogeneous.

Another aspect worth noting is the decrease in height
of the peak with repetition number. Compare for exam-
ple, the height of the negative peak at x =4 and positive
peak at x =8. Clearly, the former is V2 times the latter
(r =2, where r is the repetition number) indicating that
the amplitude decreases with repetition number as in the
nonrelativistic spinless case for orbits occurring in fami-
lies.

Thus there is enough evidence that the periodic orbit
sum for the Dirac density of states is similar to the spin-
less case and the difference essentially arises in the ac-
tions S due to the additional contributions from the dy-
namics of the spin variables, which give rise to entirely
distinct spectra.

As for the spherical case, the spectra of deformed cavi-
ties are also influenced by periodic orbits. For a,=0.4,
they appear at x =3.1, 4.026, 4.384, 4.55, 4.65, 6.25, and
so on. All except the last one are orbits occurring in
one-parameter families in the XY plane at Z=0. The
path of length 6.25 is for a parallelogram connecting the
four tips of the major and minor axes. The presence of
these orbits in dg(E) can be seen in Fig. 5. The path of
length 5.42 along the symmetry (Z) axis is, however, not
as distinct since it is isolated and unstable and hence
seems to have a smaller weight compared to others, as in
the Schrodinger case. There is also an orbit of length
3.52 which is in the XY plane and oscillates between op-
posite points at a nonzero Z value where the curvature is
zero. The plot of g(x) using the KG spectrum is also
shown in Fig. 5 for a,=0.4. Clearly the same orbits
influence the Dirac and KG spectra though the corre-
sponding phases u, are distinct for the two.
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IV. WAVE FUNCTIONS

Having established the influence of classical dynamics
in the eigenenergy spectrum of a Dirac particle in both
the spherical and nonspherical cavities, it is natural to en-
quire about the nature of the wave functions in such
cases. As in the case of fluctuation measures, we shall
confine ourselves to those properties which are known to
reflect the nature of the underlying classical dynamics.
Of these, nodal and contour plots offer considerable in-
sight and we shall use these extensively in our investiga-
tion of “scarred” states. The amplitude distribution and
the phenomenon of “contour splitting” are two other
characteristics that are known to have a direct relation-
ship with the underlying classical dynamics and we shall
present our results on these for both the spherical and de-
formed cavities.

The eigenfunctions for quadrupole deformations of the
cavity are calculated by using the method described in
Sec. II above. The eigenfunctions consist of four com-
ponents. We shall call these ¥, with i/ running from 1 to
4. The first two are given by the upper component of the
Dirac eigenfunction with m, equal to +1 and —1, re-
spectively, and the last two are given by the lower com-
ponent, also with m, values of +% and —1. The lower
two components are essentially obtained by operating
-V on the upper components. We shall therefore con-
sider the first two components only for the discussion.

A. Nodal patterns

Nodal patterns, along with the amplitude distribution
and spatial correlation function, were the first charac-
teristics that were studied in detail [21]. An important,
though not unmistakable, signature of classical nonin-
tegrability in a nodal pattern is the presence of avoided
crossings. It is also known that such a phenomenon can
occur in integrable systems with degeneracies [22]. How-
ever, the presence of nonintegrability does make the pat-
tern “irregular” in sharp contrast to the integrable case.

For the spherical cavity, ¥, and v, are proportional to
Jpr)Y,,—1(0) and i (pr)Y;, . ,(0), respectively.
Thus the nodal lines (the lines along which the wave
function vanishes) are given by j,(pr)=0 and Y,)m1=0.

These correspond to lines of constant r and constant 6 in
the polar coordinate system. Furthermore, there is a
correlation between the two components; namely, the
constant r nodal lines are the same for the two com-
ponents and there is one less (more) constant 6 nodal line
for 4, if m; is positive (negative). The nodal curves for
the first component of the negative parity, m; =} state at
£€=21.2458 are plotted in Fig. 6. There are no avoided
crossings and contour splittings. The corresponding per-
spective plot of the wave function is shown in Fig. 7.
This is clearly the “whispering gallery” mode that is
known to exist in the Schrodinger wave functions of the
circle billiard. Generally, this mode becomes prominent
as |k| becomes large.

As an illustrative example of 0.4 deformation, we
present in Figs. 8 and 9 the nodal curves for ¥, and ¢, of
the positive parity, m; =} state at £¢=36.7397. These

T T L
Nodal Lines, First Component, Deformation 0.0
Energy 21.2458, j=7/2, m;=1/2, Negative Parity
1+ _,
0l 4

X(fm)

-1 - d

1 1 1

-1 0 1

Z(fm)

FIG. 6. Nodal curves of ¥, in a spherical cavity.

curves are distinct from the zero deformation case and
display avoided crossings and are also irregular. The lack
of correlation between the two components is also evident
here. The corresponding spectral statistics for this sys-
tem is close to that of chaotic systems. Clearly, then, no-
dal patterns reflect the underlying irregularity of the clas-
sical dynamics.

B. Contour plots and scarred wave functions

We now turn our attention to the phenomenon of scar-
ring. Scarred states are a class of states localized on short
unstable periodic orbits that were first seen in the stadi-
um billiard and studied extensively by Heller [23]. The
discovery has indeed led to a host of theoretical work of
which that by Bogomolny [24], Berry [25], and Eckhardt,
Hose, and Pollak [26] has attracted considerable atten-
tion. In the first two [24,25], the (energy) averaged inten-
sity is expressed as a sum of contributions from periodic
orbits. The mechanism, however, is clearly collective and
hence not evident from these studies. Eckhardt, Hose,
and Pollak [26] introduced the concept of adiabatic sta-
bility of (Lyapunov) unstable periodic orbits and showed
that short orbits possessing this quality generate a dy-
namic confining potential similar to those constructed for
the bouncing ball family of periodic orbits in the stadium
[27] and 7 /3 rhombus billiard [28]. Scarred states can
thus be predicted to an extent using such analysis for the
quartic oscillator. However, the theory has not been test-
ed on other systems, and, in general, the scarring mecha-
nism is still poorly understood.

Our primary interest here is to numerically establish
the existence of scarred eigenfunctions for the Dirac
equation. For the spherical cavity, the “whispering gal-
lery” mode shown earlier is clearly an example of locali-
zation. However, in this case the orbits do not occur in
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two-parameter families. With the introduction of a slight
deformation, however, the structure of orbits changes,
and a wider class of localized states can be observed.
Figure 10 shows an example of scarring on an isolated
orbit for the 0.1 deformation cavity. Two conjugate (fo-
cal) points can also be observed and the behavior is simi-
lar to that of some of the eigenfunctions in the stadium
billiard. Note also that the oscillation around the orbit is
identical to the schematic plot of Bogomolny (see [24]).
Another example of scarring on the same orbit can be

T T T

Nodal Lines, First Component, Deformation 0.4
Energy 36.7397, m;=1/2, Positive Parity

-1 0 1
Z(fm)

FIG. 8. Typical nodal curves of ¢, for a,=0.4.
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b g
(arb. unit)
FIG. 7. Perspective plot of 9,
used in Fig. 6.
0]

seen in Fig. 11 though having a visibly different structure.

The effect becomes even more dramatic and pro-
nounced for a larger deformation (a,=0.4). The
whispering gallery modes are visible again as can be seen
in Fig. 12 for a high m; state. For the orbit along the z
axis, also, we have observed a number of scarred states
with a variety of structures. However, there are other
states where localization is very strong, though not pro-
nounced on any particular orbit. One such example can
be seen in Fig. 13. Finally we have in Fig. 14 the contour

Nodal Lines, Second Component
Deformation 0.4
1t Energy 36.7397, m;j=1/2, Positive Parity -

SEANYE
0_%@%& 2N
UO %C
&QQ

W
S

1 1 1

-1 0 1
Z(tm)

FIG. 9. Asin Fig. 8 for the second component.
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Energy 30.9866, m;=1/2, Positive Parity

-1 0 1
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FIG. 10. Scarring on an isolated orbit in the a,=0.1 cavity.

plots of a state at €=37.9907 with scarring on the dia-
mond shaped orbit connecting the tips of the major and
minor axes.

We have thus demonstrated the existence of scarred
eigenfunctions for a Dirac particle in a nonspherical cavi-
ty. The kinds of structures seen are reminiscent of the
wave functions of the Schrodinger equation, an observa-
tion consistent with the earlier section on spectral statis-

tics.

0
X(im)

Contours, First Component, Deformation 0.1
Energy 30.9866. m;=1/2, Positive Parity

1 1 1

-1 0 1
Z(tm)

FIG. 11. Another example of scarring on the same orbit as in
Fig. 10. Note the visibility different structure.
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FIG. 12. A whispering gallery mode in the a,=0.4 cavity.
The first component is shown here.

C. Amplitude distribution P() and contour splitting

The amplitude distribution [29] has been used in
several studies to judge the degree of irregularity in the
Schrodinger eigenfunctions of nonintegrable systems.
The initial motivation came from an extension of the
finite superposition of plane waves applicable to integra-
ble systems. For chaotic systems, keeping in mind the

X(fm)
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1 T )

Contours, First Component, Deformation 0.4
Energy 37.4426, m;=7/2, Negative Parity
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68
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7
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FIG. 13. An example of scarring by more than one orbit.



1342 S. C. PHATAK, SANTANU PAL, AND DEBABRATA BISWAS 52

T T T

Contours. Second Component. Deformation 0.4
Energy 37.9907. m;=1/2, Positive Parity

-1 0 1
Z(fm)

FIG. 14. Scarring along a diamond shaped orbit.

isotropy of momentum directions swept by a typical or-
bit, Berry [29] proposed an ansatz using an infinite super-
position of waves with the same wave vector magnitude
but random phases and directions. Each of the com-
ponents can then be treated as a random variable with
identical distribution which then leads to a Gaussian dis-
tribution for the amplitude v, using the central limit
theorem. Though lacking a firm theoretical basis, the
conclusions have indeed been verified, in particular for
the stadium billiard [21]. Biswas, Azam, and Lawande
[30] have subsequently used the periodic orbit approach
along with a couple of limiting theorems on nonidentical
distributions (each orbit has indeed a distinct and
different contribution as the works of Bogomolny [24]
and Berry [25] reveal) to show that for a typical un-
scarred state, where a large number of periodic orbits
contribute, the amplitude distribution is close to a Gauss-
ian. A scarred state, on the other hand, would have a
very sharp peak near =0, indicating that the wave func-
tion is localized in a small region of the classically al-
lowed configuration space. A typical regular (though
nonlocalized as in the rectangular billiard) state, on the
other hand, would have smooth but non-Gaussian distri-
bution except for a spike at y=0.0. The behavior near
zero in this case is due to the fact that the number of
such points is twice that of a small positive or negative
value of .

The above description immediately suggests another
measure of irregularity. Irregular wave functions with a
Gaussian amplitude distribution should also possess “sur-
face roughness” and show up in the splitting of contours.
This concept was introduced recently by Biswas, Azam,
and Lawande [31], where they prove that wave functions
belonging to integrable systems can have only one local
extremum between two (parallel) nodal lines, thus exclud-

100.0
Deformation 0.0
First Component
Energy 28.8355
P(¥) 50.0 | §
0.0 o
-0.3 0.0 0.3

v

FIG. 15. The amplitude distribution P(3) for a typical state
in the spherical cavity.

ing the possibility of undulations on the surface and
hence contour splitting. They argue heuristically that
chaotic systems can have surface roughness, a fact
strengthened by a careful examination of what the ampli-
tude distribution reveals. The smooth behavior of P ()
for a Gaussian amplitude distribution clearly indicates

10.0 T
Deformation 0.4
Second Component
Energy 26.7120
RY) 50} J
0.0 A
-0.5 0.0 0.5

v

FIG. 16. P(%) for the second component of a typical state for
a,=0.4.
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that there are (nearly) as many points with ¥y=0 as with
¥ equal to a small positive or negative value—a
phenomenon that is possible only if the wave function has
undulations without crossing zero. Sections of the wave
function would then show several contours inside one at a
lower “height”—a phenomenon referred to as contour
splitting.

In Fig. 15 we first show a plot of amplitude distribution
for the first component of the whispering gallery mode in
the spherical cavity shown earlier. Since the state is lo-
calized, a sharp spike can be seen at zero.

For the 0.4 deformation, however, we present a plot of
P (%) in Fig. 16 which, though not an ideal Gaussian, ex-
hibits irregularity of the wave functions. We observe,
however, that the number of states with an amplitude dis-
tribution close to a Gaussian is few since an overwhelm-
ing large number of them are scarred. A certain degree
of surface roughness can, however, be seen in several
cases for the 0.4 deformation case.

V. DISCUSSION

An important aspect of this study has been to under-
stand the nature of the Dirac spectrum. Our results in
this direction can be summarized as follows:

(i) Fluctuations in the density of energy eigenstates are
due to the same periodic orbits which influence the spec-
trum for the spinless case.

(ii) The actions S; associated with the orbits are in gen-
eral different from the spinless nonrelativistic case and
indeed this gives rise to an entirely different spectrum for
the Dirac particle.

(iii) Other details such as the dependence of the ampli-
tude of individual oscillations on the repetition number in
dy(E) seem to be identical to the Schrodinger case.

Not surprisingly, therefore, statistical measures on the
spectrum of a spherical cavity belong to the same univer-
sality class as a generic spinless nonrelativistic particle
having integrable classical dynamics. Further, as is to be
expected, these statistical measures approach the results
for a spinless nonrelativistic particle having chaotic clas-
sical dynamics with increasing deformation of the cavity.

These results naturally give rise to the question of
universality in general relativistic systems with spin. Do
universality classes exist with respect to the nature of the
underlying classical dynamics? Also it is not obvious that
the underlying classical dynamics or even the periodic or-
bits remain unchanged in systems other than cavities or
billiards. The work [12] on systems with spin-orbit cou-
pling indicates in that direction. In fact, the equality is a
special feature of the cavity potential with hard walls [8].
Particles moving in integrable and nonintegrable poten-
tials need to be considered in future studies.

Our results on wave functions are equally enlightening.
Avoided nodal crossings and an increase in irregularity of
the curves can be seen with the deformation of the cavity,
reminiscent of conventional studies on spinless nonrela-
tivistic systems. Also, the imprint of short periodic orbits
on wave functions, a phenomenon referred to as scarring,
can be seen in several cases. The orbits involved are iden-
tical to those in the spinless case, consistent with our re-
sults on the Fourier transform of the spectrum.

Further studies on the wave functions of systems other
than cavities are, however, important, since they would
indicate any change in the underlying classical dynamics
with the introduction of spin.

In conclusion, therefore, our study offers an insight
into the nature of the Dirac eigenstates and establishes
the influence of periodic orbits in both the quantal energy
spectrum and the wave functions.
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